Sem-IV PSMT401, PSMT402, PSMT403 and PSMT404 Sample Questions

- 1. (1 point) The extension $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} is:
 - 1. not algebraic
 - 2. not finite
 - 3. algebraic
 - 4. of degree four
- 2. (1 point) Let $\omega \neq 1$ be a cube root of unity. Then, the degree of the extension $\mathbb{Q}(\omega)$ over \mathbb{Q} is:
 - 1. Four
 - 2. Two
 - 3. Three
 - 4. One
- 3. (1 point) The degree of the splitting field of $X^5 2$ over \mathbb{Q} is:
 - 1. Twenty
 - 2. Ten
 - 3. Five
 - 4. One
- 4. (1 point) Consider the extension $L = \mathbb{Q}(\sqrt[3]{2})$. Then the extension L/\mathbb{Q} is
 - 1. Not algebraic
 - 2. Not normal
 - 3. Not finite
 - 4. Not separable.
- 5. (1 point) The degree of the extension $\mathbb{Q}(\sqrt[3]{17},\sqrt{19})$ over \mathbb{Q} is
 - 1. Three
 - 2. Two
 - 3. Six
 - 4. One
- 6. (1 point) Which of these constructions is possible using ruler and compass?
 - 1. Trisecting angles
 - 2. Doubling cubes

- 3. Equilateral triangles
- 4. Squaring circles
- 7. (1 point) Let F be a field of characteristic zero. Which of the following statements is true?
 - 1. Every irreducible polynomial over F is separable.
 - 2. Every polynomial over F is separable.
 - 3. Every polynomial and its derivative over F always have a common root.
 - 4. Every polynomial over F always has a root in F.
- 8. (1 point) Let \mathbb{F}_p denote the finite field with p elements. Then, the map $\phi : \mathbb{F}_p \to \mathbb{F}_p$ given by $\phi(x) = x^p$ is
 - 1. Only injective but not surjective
 - 2. Only surjective but not injective
 - 3. A bijection
 - 4. Neither surjective nor injective
- 9. (1 point) Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. A primitive element for this extension is:
 - 1. $\sqrt{2}$ 2. $\sqrt{3}$ 3. $\sqrt{2} + \sqrt{3}$ 4. $\sqrt{6}$
- 10. (1 point) If the minimal polynomial of $\sqrt{1+\sqrt{3}}$ is written in the form $X^4 + bX^3 + cX^2 + dX + e$, then the values of c and e are
 - 1. c = -2, e = 2. 2. c = 2, e = -2. 3. c = 2, e = 2. 4. c = -2, e = -2.
- 11. (2 points) The Fourier series expansion of $f(x) = \tan \theta$ where $\theta \in [0, 2\pi]$ is given by
 - 1. $f(x) = \tan \theta = \sum_{n=0}^{\infty} (a_n \cos n\theta + b_n \sin n\theta)$ where a_n and b_n denotes the Fourier coefficients.
 - 2. $f(x) = \tan \theta = \sum_{n=0}^{\infty} (a_n \cos n\theta)$ where a_n denote the cosine Fourier coefficients,
 - 3. $f(x) = \tan \theta = \sum_{n=0}^{\infty} (b_n \sin n\theta)$ where b_n denote the sine Fourier coefficients,

4. $f(x) = \tan \theta$ cannot express in terms of Fourier series in $\theta \in [0, 2\pi]$.

- 12. (2 points) Let $\hat{f}(n)$ denotes Fourier coefficient of f. Which of the following inequality/ equality holds for L^2 periodic and integrable function f
 - 1. $|\hat{f}(n)| \leq ||f||_1 \leq ||f||$ for all $n \in Z$, 2. $|\hat{f}(n)| = ||f||_1 = ||f||$ for all $n \in Z$, 3. $|\hat{f}(n)| = ||f||_1 \leq ||f||$ for all $n \in Z$, 4. $|\hat{f}(n)| \leq ||f||_1 = ||f||$ for all $n \in Z$.
- 13. (2 points) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous periodic function such that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = 0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

for all $n \in Z^+$ then

- 1. f is identically zero,
- 2. f is a even function,
- 3. f is a odd function,
- 4. f is neither even nor odd function.
- 14. (2 points) Let $S_N(f)$ denotes the N-th partial sum of Fourier series of f and $\{e_n\}$ be an orthonormal set. Let f is integrable function defined on the circle. Which of the following inequality holds for any complex number c_n ?

1.
$$||f + S_N(f)|| \le ||f + \sum_{|n| \le N} c_n e_n||,$$

2. $||f - S_N(f)|| \le ||f - \sum_{|n| \le N} c_n e_n||,$
3. $||f - S_N(f)|| \le ||f + \sum_{|n| \le N} c_n e_n||,$
4. $||f + S_N(f)|| \le ||f - \sum_{|n| \le N} c_n e_n||.$

15. (2 points) Which of the following property holds for the N-th Dirichlet kernel $D_N(\theta)$?

1.
$$\int_{-\pi}^{\pi} |D_N(\theta)| d\theta = 2\pi,$$

2.
$$\int_{-\pi}^{\pi} |D_N(\theta)| d\theta \ge c \log N \text{ as } N \longrightarrow \infty \text{ and } c \text{ is a constant,}$$

3.
$$\int_{-\pi}^{\pi} |D_N(\theta)| d\theta \le c \log N \text{ where } c \text{ is a constant,}$$

4.
$$\int_{-\pi}^{\pi} |D_N(\theta)| d\theta = c \log N$$
 where c is a constant.

16. (2 points) The Nth Fejer's kernel $F_N(x)$ is given by

1.
$$F_N(x) = \frac{\cos^2(Nx/2)}{N\cos^2(x/2)},$$

2. $F_N(x) = \frac{\sin^2(Nx/2)}{N\sin^2(x/2)},$
3. $F_N(x) = \frac{\sin^2(Nx/2)}{N\cos^2(x/2)},$
4. $F_N(x) = \frac{\cos^2(Nx/2)}{N\sin^2(x/2)}.$

- 17. (2 points) Which of the following is not a good kernel?
 - 1. Dirichlet's Kernel,
 - 2. Fejer's Kernel,
 - 3. Poisson Kernel,
 - 4. Heat Kernel .

18. (2 points) The Poisson kernel $P_r(\theta)$ is given by

1.
$$P_r(\theta) = \frac{1+r^2}{1+2r\cos\theta+r^2},$$

2. $P_r(\theta) = \frac{1-r^2}{1-2r\sin\theta+r^2},$
3. $P_r(\theta) = \frac{1+r^2}{1+2r\sin\theta+r^2},$
4. $P_r(\theta) = \frac{1-r^2}{1-2r\cos\theta+r^2}.$

- 19. (2 points) Let $u(r, \theta) = (f * \Pr)(\theta)$, where f is an integrable function defined on the unit circle and $\Pr(\theta)$ denotes the Poisson kernel. If θ is any point of continuity of f then
 - 1. $\lim_{r \to 1} u(r, \theta) = f(\theta),$
 - 2. $\lim_{r \to 1} u(r, \theta) = f(0),$
 - 3. $\lim_{r \to 1} u(r, \theta) = 0,$
 - 4. $\lim_{r \to 1} u(r, \theta) \longrightarrow \infty$.
- 20. (2 points) The solution of Dirichlet problem $\Delta u = 0$ for the unit disc defined by $D = \{(r, \theta)/0 \le r < 1, 0 \le \theta < 2\pi\}$ subject to the fixed temperature $\sin \theta$ along the circumference $C = \{(r, \theta)/r = 1, 0 \le \theta < 2\pi\}$ is given by

- 1. $\cos \theta$,
- 2. $r\cos\theta$,
- 3. $\sin \theta$,
- 4. $r\sin\theta$.

21. (3 points) Let A be a $n \times n$ matrix. Determinant is

- 1. n^2 tensor
- 2. n tensor
- 3. 2n tensor
- 4. not a tensor
- 22. (3 points) Which of the following statement is true:
 - 1. $T \otimes S = -S \otimes T$ 2. $-(T \otimes S) = (-S) \otimes T$ 3. $-(T \otimes S) = S \otimes (-T)$ 4. $T \otimes S \neq S \otimes T$

23. (3 points) If v = (2, -1, 0) and w = (0, 1, 3) then cross product $v \times w$ is

1. (0, -1, 0)2. (3, 6, -2)3. (-1, -2, 1)4. (-3, -6, 2)

24. (3 points) If $f(x, y, z) = x^2y - xz$ then gradient of f i.e., ∇f is

1. (2xy, -z, 0)2. $(2xy, x^2, -x)$ 3. $(-z, x^2, -1)$ 4. $(2xy - z, x^2, -x)$

25. (3 points) If $\omega \in \Lambda^k(\mathbb{R}^n)$ and $\eta \in \Lambda^r(\mathbb{R}^n)$ then $\omega \wedge \eta$ is in

1. $\Lambda^k(\mathbb{R}^n)$ 2. $\Lambda^r(\mathbb{R}^n)$ 3. $\Lambda^{kr}(\mathbb{R}^n)$ 4. $\Lambda^{k+r}(\mathbb{R}^n)$

26. (3 points) If $f(x, y, z) = xy + z^2$ then df is 1. 0 2. (x + y + 2z)dxdydz3. xdx + ydy + 2zdz4. ydx + xdy + 2zdz

27. (3 points) If $\eta = 3xdy$ and $\omega = xydx + dy$ then $\eta \wedge \omega$ is

- 1. 3x dy
- 2. $3x^2y \, dx \wedge dy$
- 3. $3xy \, dx \wedge dy$
- 4. $-3x^2y \, dx \wedge dy$
- 28. (3 points) Let $F : \mathbb{R}^3 \to \mathbb{R}^3$ and $G : \mathbb{R}^3 \to \mathbb{R}^3$ be vector fields defined by F(x, y, z) = (x, 0, z) and G(x, y, z) = (y, 0, 0). Then $F \times G(x, y, z) =$
 - 1. (0, 0, 0)2. (0, -yz, 0)
 - 3. (xy, 0, 0)
 - 4. (0, yz, 0)

29. (3 points) If $\omega = 2zdx + 3ydy$ then $d\omega =$

- 1. $2zdx \wedge dz$
- 2. $2dx \wedge dz + 3dy$
- 3. 2dx + 3dy
- 4. $2dz \wedge dx$
- 30. (3 points) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by f(x, y) = x + y. The pull back $f^*\omega$ of the form $\omega = dx$ is
 - 1. dxdy
 - 2. dx
 - 3. $dx \wedge dy$
 - 4. dx + dy
- 31. (4 points) Which of the following points is contained within the feasible region corresponding to the system of inequalities? 3x + 6y < 125x + 7y > 8
 - 1. (2,1)
 - 2. (2,0)
 - 3. (1,0)
 - 4. (0, 1)

32. (4 points) Consider the following maximization problem and select the correct number of slack variables required to solve the problem using the simplex mmethod

 $Maximize \quad P = 4 + 4y - 2z$

subject to

$$x + 2y - 3z \le 4$$

$$5x + 6y + 7z \le 8$$

$$9x + 10y + 11z \le 12$$

$$13x + 14y + 15zz \le 16$$

$$x \ge 0, y \ge 0, z \ge 0$$

- 1. 4 slack variables
- 2. 3 slack variables
- 3. 1 slack variables
- 4. 7 slack variables
- 33. (4 points) At which point is the function F = 3x + 4y minimized with respect to the feasible region

$$-3x + y \le 0$$
$$2x + y \ge 10$$
$$x \ge 0, y \ge 0$$

- 1. (5,0)
- 2. (0,0)
- 3. (2,6)
- 4. (0, 10)
- 34. (4 points) After completing the simple method, the solution can be read from the final simplex table. Which variables are not automatically set equal to zero?
 - 1. Non -Basic variables
 - 2. Basic variables
 - 3. Independent variables
 - 4. Dependent variables
- 35. (4 points) The objective function and constraints are functions of two types of variables, — variables and — variables.
 - 1. Controllable and uncontrollable
 - 2. Positive and negative

- 3. Strong and weak
- 4. None of the above
- - 1. Suitable manpower
 - 2. Financial operations
 - 3. mathematical techniques, models, and tools
 - 4. diagrammatic models
- 37. (4 points) When applying the Golden Section Search method to a function f(x) to find its maximum, the f(x) > f(x) condition holds true for the intermediate points x_1 and x_2 Which of the following statements is incorrect?
 - 1. The new search region is determined by $[x_1, x_2]$
 - 2. The upper bound x_u stays the same
 - 3. The Intermediate point x_1 stays as one of the intermediate points
 - 4. The new search region is determined by $[x_1, x_2]$
- 38. (4 points) Using the Golden Section Search method, find two numbers whose sum is 90 and their product is as large as possible. Conduct two iterations on the interval [0, 90].
 - 1. 30 and 60
 - 2. 38 and 52
 - $3. \ 45 \ and \ 45$
 - 4. 20 and 70
- 39. (4 points) Which of the terms is not used in a linear programming problem
 - 1. Slack variables
 - 2. Concave region
 - 3. Objective function
 - 4. Feasible solution

40. (4 points) For what value of **x** , is the function $f(x) = x^2 - 2x - 6$ minimized?

- 1. 0
- 2. 5
- 3. 1
- 4. 3