Complex Analysis (Sem I and III)

1. Let
$$z, w \in \mathbb{C}$$
. Then $|| z | - | w || \le \dots$
A. $| z | - | w |$.
B. $| z - w |$.
C. $z - w$.
D. $z + w$.

2. The radius of convergence of the power series $\sum_{n=0}^{\infty} (8+6i)^n z^n$ is

A. 10. B. $\frac{1}{10}$. C. 100. D. 20.

3. The length of the curve $\gamma(t)=3e^{it}$, $t\in[0,2\pi]$, is

- A. 2π B. π C. $\frac{\pi}{2}$ D. 6π 4. $\int_{\gamma} \frac{z^2 + z + 2}{z} dz = \dots$, where γ is the circle |z| = 5A. $i\pi$ B. $4i\pi$ C. $10i\pi$ D. zero
- 5. Let f be analytic in open disk $B(a; R) \subset \mathbb{C}$ and suppose $|f(z)| \leq M$ for all z in B(a; R). Then $|f^{(2)}(a)| \leq \dots$

A.
$$\frac{Mn!}{R^n}$$

B. $\frac{M}{R^n}$
C. $\frac{6M}{R^3}$
D. $\frac{2M}{R^2}$
6. $\int_{\gamma} \frac{\sin z + z^2}{z - 4} dz = \dots$, where γ is the circle $|z| = \frac{3}{2}$.
A. $2\pi i$

- B. $4\pi i$
- C. zero
- D. 16π
- 7. Let G be a domain in \mathbb{C} and suppose that f is a non constant analytic function on G. Then for any open set U in G ,
 - A. f(U) is closed.
 - B. f(U) is open.
 - C. f(U) is neither open nor closed.
 - D. f(U) is both open and closed.
- 8. Let $z = z_0$ be an isolated singularity of f and let $f(z) = \sum_{n=-\infty}^{\infty} c_n (z z_0)^n$ be its

Laurent series expansion in $ann(z_0; 0, R)$. If $c_n = 0$ for $n \leq -1$ then $z = z_0$

- A. is a pole of order n.
- B. is a removable singularity.
- C. is a non isolated singularity.
- D. is an essential singularity.
- 9. If f is analytic in $0 < |z \alpha| < R$ and f has a pole of order 8 at $z = \alpha$ so that $f(z) = \frac{g(z)}{(z-\alpha)^8}$, where g is analytic in $|z \alpha| < R$ then the residue of f at $z = \alpha$ is

A.
$$\frac{g^{(8)}(\alpha)}{7!}$$

B. $\frac{g^{(5)}(\alpha)}{4!}$
C. $\frac{g^{(8)}(\alpha)}{8!}$
D. $\frac{g^{(7)}(\alpha)}{7!}$
10. Let $f(z) = \frac{z^2}{(z-3)(z+2)^2}$. Then the residue of f at $z = 3$ is
A. $\frac{4}{16}$
B. $\frac{9}{24}$
C. $\frac{9}{16}$
D. $\frac{9}{25}$

- 11. Let $f(z) = z^6 5z^4 + z^3 2z$ then f(z) has zeros, counting multiplicities , inside the circle |z| = 1.
 - A. 3

- B. 6
- C. 4
- D. 2
- 12. Let z = x + iy and w = u + iv. The image of straight line $x = \frac{1}{4}$ in the complex plane under the transformation $w = \frac{1}{z}$ is,
 - A. $u^{2} + v^{2} 4u = 0$ B. $u^{2} + v^{2} - 4u = 4$ C. $u^{2} + v^{2} - 4v = 0$ D. none of these

13. Let $S(z) = \frac{4z+5}{6z+7}$ be a mobius transformation. Then $S^{-1}(z) = \dots$ A. $s(z) = \frac{7z-5}{-6z+4}$ B. $s(z) = \frac{7z-5}{6z-4}$ C. $s(z) = \frac{7z+5}{-6z+4}$ D. $s(z) = \frac{6z-5}{4z-7}$

Differential Geometry

- 1. The value of t for which the vector (3, 1, t) is parallel to the plane 2x + 4y + 5z = 12 is
 - (A) 4
 - (B) 3
 - (C) 2
 - (D) -1
- 2. The equation of hyperplane passing through points p = (1, 2, 1), q = (-2, -1, 3) and r = (2, -3, -1)
 (A) 8x + 2y + 9z = 13
 (B) 8x + 2y 9z = 13
 (C) 8x 2y + 9z = 13
 - (D) 8x 2y 9z = 13
- 3. Let S₁ be unit sphere in ℝ³ center at origin and S₂ be another sphere in ℝ³ of radius 5 center at origin. Let γ₁ and γ₂ be two diametric circles on S₁ and S₂ respectively, and κ_i, τ_i are curvatures and torsions of γ_i respectively, for i = 1, 2. Then
 (A) κ₁ = κ₂ and τ₁ < τ₂
 - (B) $\kappa_1 = \kappa_2$ and $\tau_1 > \tau_2$
 - (C) $\kappa_1 < \kappa_2$ and $\tau_1 = \tau_2$
 - (D) $\kappa_1 > \kappa_2$ and $\tau_1 = \tau_2$.

- 4. The arc-length of one complete turn of the circular helix $\gamma(t) = (a \cos t, a \sin t, bt)$ for
 - a, $b \in \mathbb{R}$ (A) $\pi \sqrt{a^2 + b^2}$ (B) $4\pi \sqrt{a^2 + b^2}$ (C) $2\pi \sqrt{a^2 + b^2}$, (D) $3\pi \sqrt{a^2 + b^2}$.
- 5. For $\gamma : (0, 2\pi) \longrightarrow \mathbb{R}^3$, $\gamma(t) = \frac{1}{\sqrt{2}} (\int_t^{\pi/2} \sin s \ ds, \ t, \ \int_0^t \cos s \ ds)$. Curvature κ of γ at $(0, \frac{1}{\sqrt{2}}, 0) = \gamma(1)$ is (A) $\frac{\pi}{\sqrt{2}}$ (B) $\frac{1}{\sqrt{2}}$ (C) $\frac{2\pi}{\sqrt{2}}$ (D) $2\sqrt{2}$.

6. If S with the parametrization X for open U and if α : [0, 1] → S a regular parametrized curve. Then the tangent surface of α is
(A) **x**(t, v) = α(t) + vα'(t), for (t, v) ∈ [0, 1] × ℝ
(B) **x**(t, v) = vα(t) + α'(t), for (t, v) ∈ [0, 1] × ℝ
(C) **x**(t, v) = vα(t) + vα'(t), for (t, v) ∈ [0, 1] × ℝ
(D) **x**(t, v) = v(α(t) + tα'(t)), for (t, v) ∈ [0, 1] × ℝ.

- 7. Let $X : U \subset \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, for each $q \in U$, the differential $dX_q : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ is one to one is equivalent to say that
 - (A) $X_u \times X_v = 0$
 - (B) $X_u \times X_v \neq 0$
 - (C) two column vectors of the matrix dX_q to be linearly dependent
 - (D) the minor of order two of the matrix dX_q be zero.

- 8. First fundamental form I_q of a plane P ⊂ IR³ passing through q = (1,0,0) containing vectors (1,1,0) and (1,0,1) is
 (A) du² + 2dudv + dv²
 (B) du² + dv²
 - (C) $du^2 dv^2$
 - (D) $du^2 2dudv + dv^2$
- 9. Let $S \subset \mathbb{R}^3$ be a regular surface and $X : U \subset \mathbb{R}^2 \longrightarrow S$ is its surface patch; if k_1, k_2 are principal curvatures of surface patch x at point p, then
 - (A) k_1, k_2 are real numbers
 - (B) there exist a tangent vector to x at p which is not a principal vector
 - (C) k_1, k_2 can not be real numbers
 - (D) k_1, k_2 are purely imaginary numbers
- 10. Let $p \in S$ and let $dN_p : T_p(S) \longrightarrow T_p(S)$ be a differential of the Gauss map where $T_p(S)$ denotes tangent space of surface S at point p. A point on a surface S is parabolic if
 - (A) $det(dN_p) = 0$
 - (B) $det(dN_p) > 0$
 - (C) $det(dN_p) < 0$
 - (D) $det(dN_p) = 0$ with $dN_p \neq 0$

Sem-I PSMT104/PAMT104 DISCRETE MATHEMATICS (Sample Questions)

- 1. If 56x + 72y = 40, where x and y are integers. Then
 - A. There finitely many possibilities for x and y.

B. x = -15 + 7t, y = 20 - 9t, where $t \in \mathbb{Z}$.

- C. x = 20 + 9t, y = -15 7t, where $t \in \mathbb{Z}$.
- D. x = 20 + 7t, y = -15 9t, where $t \in \mathbb{Z}$.
- 2. The equation $x^3 + 6x^2 + 11x + 6 = 0$ has
 - A. Three non-real roots.
 - B. Three real roots.
 - C. Two non-real roots and one real root.
 - D. Two real roots and one non-real root.
- 3. Let f be a function from a set with k + 1 or more elements to a set with k elements. Then
 - A. f is not injective.
 - B. f is injective.
 - C. f is bijective.
 - D. f is injective but can not be surjective.
- 4. How many cards must be selected from a standard deck of 52 cards to guarantee that at least three cards of the same suit are selected?
 - A. 6.B. 7.C. 9.D. 8.
- 5. At a party, seven gentlemen check their hats. In how many ways can their hats be returned so that at least two of the gentlemen receive their own hats?
 - A. $7! D_7$. B. $7! - D_7 - 7 \times D_6$. C. $7! - D_7 - D_6$. D. $D_7 - D_6$.

6. If r(m, n) denote the Ramsey number then which of the following is true.

- A. r(3,5) < 14 and r(4,4) < 18. B. r(3,5) = 14 and r(4,4) < 18. C. r(3,5) = 14 and r(4,4) = 18. D. r(3,5) < 14 and r(4,4) = 18.
- 7. Find the exponential generating function for the sequence $\{a_n\}$, where $a_n = n + 1, n = 0, 1, 2, ...$
 - A. $(x+1)e^x$ B. xe^x C. e^x D. $2xe^x$

8. Find the coefficient of x^{10} in the power series of $1/(1-x)^3$

- A. 64B. 65
- C. 67
- D. 66

9. Find the sequence with $f(x) = e^{3x} - 3e^{2x}$ as its exponential generating function.

- A. $a_n = 3^{n+1} 3 \times 2^{n+1}$ B. $a_n = 3^{n-1} - 3 \times 2^{n-1}$
- C. $a_n = 3^n 3 \times 2^n$
- D. $a_n = 3^{n+1} + 3 \times 2^{n+1}$
- 10. Suppose a necklace can be made from beads of three colors: black, white, and red. How many different necklaces with 3 beads are there if we assume that only the cyclic group of order three (without any reflections) acts?
 - A. 8
 - B. 9
 - C. 10
 - D. 11

Sem-IV PSMT401/PAMT401 FIELD THEORY (Sample Questions)

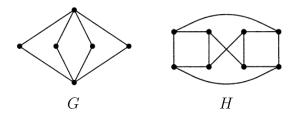
- 1. The extension $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} is:
 - A. not algebraic
 - B. not finite
 - C. algebraic
 - D. of degree four
- 2. Let $\omega \neq 1$ be a cube root of unity. Then, the degree of the extension $\mathbb{Q}(\omega)$ over \mathbb{Q} is:
 - A. Four
 - B. Two
 - C. Three
 - D. One
- 3. The degree of the splitting field of $X^5 2$ over \mathbb{Q} is:
 - A. Twenty
 - B. Ten
 - C. Five
 - D. One
- 4. Which of these constructions is possible using ruler and compass?
 - A. Trisecting angles
 - B. Doubling cubes
 - C. Equilateral triangles
 - D. Squaring circles
- 5. Consider the extension $L = \mathbb{Q}(\sqrt[3]{2})$. Then the extension L/\mathbb{Q} is
 - A. Not algebraic
 - B. Not normal
 - C. Not finite
 - D. Not separable.
- 6. The degree of the extension $\mathbb{Q}(\sqrt[3]{17},\sqrt{19})$ over \mathbb{Q} is
 - A. Three
 - B. Two

- C. Six
- D. One
- 7. Let F be a field of characteristic zero. Which of the following statements is true?
 - A. Every irreducible polynomial over F is separable.
 - B. Every polynomial over F is separable.
 - C. Every polynomial and its derivative over F always have a common root.
 - D. Every polynomial over F always has a root in F.
- 8. Let \mathbb{F}_p denote the finite field with p elements. Then, the map $\phi : \mathbb{F}_p \to \mathbb{F}_p$ given by $\phi(x) = x^p$ is
 - A. Only injective but not surjective
 - B. Only surjective but not injective
 - C. A bijection
 - D. Neither surjective nor injective
- 9. Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. A primitive element for this extension is:
 - A. $\sqrt{2}$ B. $\sqrt{3}$ C. $\sqrt{2} + \sqrt{3}$ D. $\sqrt{6}$
- 10. If the minimal polynomial of $\sqrt{1+\sqrt{3}}$ is written in the form $X^4 + bX^3 + cX^2 + dX + e$, then the values of c and e are
 - A. c = -2, e = 2. B. c = 2, e = -2. C. c = 2, e = 2. D. c = -2, e = -2.

Sem-III PSMT304,PAMT304 PSMT305,PAMT305 GRAPH THEORY Sample Questions

- 1. How many edges are there in a simple graph with 10 vertices each of degree six?
 - A) 20
 - B) 40
 - C) 30
 - D) 60
- 2. Which of the following statement is true for a simple graph G with at least two vertices.
 - A) G has even number of vertices of odd degree with all distinct degrees of vertices.
 - B) G must be two vertices that have the same degree.
 - C) It is possible to have G with all distinct degrees of vertices.
 - D) G has odd number of vertices of odd degree.
- 3. Let G be finite simple graph. Then
 - A) $\kappa(G) \le \kappa'(G) \le \delta(G).$
 - B) $\kappa'(G) \le \kappa(G) \le \delta(G)$.
 - C) $\delta(G) \le \kappa(G) \le \kappa'(G)$.
 - D) $\kappa'(G) \le \delta(G) \le \kappa(G)$.
- 4. Let G be a simple connected graph with $|V(G)| \ge 2$. Then, which of the following is true?
 - A) G does not have a not cut-vertex.
 - B) G has at most one not cut-vertex.
 - C) G contains at least 2 vertices which are not cut-vertices.
 - D) G contains at most 2 vertices which are not cut-vertices.
- 5. Let G be a finite simple graph. G is a tree then
 - A) G is connected and |V(G)| = |E(G)| 1.
 - B) G is connected and |E(G)| = |V(G)| 1.
 - C) G is connected graph containing cycle.
 - D) G acyclic and |V(G)| = |E(G)| 1.
- 6. If t is the number of non-isomorphic trees on 4 vertices then
 - A) t = 14.

- B) t = 12.
- C) t = 16.
- D) t = 20.
- 7. Let G be a connected graph and $F \subseteq E(G)$. Then F is bond if
 - A) G F has exactly two components.
 - B) G F has more than 2 components.
 - C) G F has more than 3 components.
 - D) G F has more than 3 components.
- 8. Which of the following statement is true, for graphs G and H given below?



- A) G non-Eulerian and H is Eulerian.
- B) G and H both are Eulerian.
- C) G and H both are non-Eulerian.
- D) G Eulerian and H is non-Eulerian.
- 9. If r(m, n) denote the Ramsey number then which of the following is true.
 - A) r(3,5) < 14 and r(4,4) < 18.
 - B) r(3,5) = 14 and r(4,4) = 18.
 - C) r(3,5) = 14 and r(4,4) < 18.
 - D) r(3,5) < 14 and r(4,4) = 18.

10. Maximum number of edges in a non-Hamiltonian graph with 10 vertices is

- A) 36
- B) 37
- C) 38
- D) 39

Integral Transforms

1) (1 point) Laplace transform of the function $\sin |t|$ is

A.
$$\frac{1}{1+s^2}$$

B. $\frac{s}{1+s^2}$
C. $\frac{1+e^{-\pi s}}{1-e^{-\pi s}} \cdot \frac{1}{1+s^2}$
D. $-\frac{1+e^{-\pi s}}{1-e^{-\pi s}} \cdot \frac{1}{1+s^2}$

- 2) (1 point) Which of the following function is of exponential order:
 - A. $t^3 \sin t$ B. e^{t^2}
 - C. $\tan t$
 - D. $\cot t$
- 3) (1 point) Laplace transform of the function $\sin\sqrt{t}$ is

A.
$$\frac{1}{2s}\sqrt{\frac{\pi}{s}}e^{\frac{1}{4s}}$$
, Re(s) > 0
B. $\frac{1}{2s}\sqrt{\frac{\pi}{2}}e^{-\frac{1}{4s}}$, Re(s) > 0
C. $\frac{1}{2s}\sqrt{\frac{\pi}{s}}e^{-\frac{1}{4s}}$, Re(s) > 0
D. $-\frac{1}{2s}\sqrt{\frac{\pi}{s}}e^{-\frac{1}{4s}}$, Re(s) > 0

4) (1 point) If f piecewise continuous on $[0, \infty)$ and is of exponential order c_0 , then $\mathcal{L}\left\{\int_0^t f(u) \, du; p\right\}$ is

A.
$$-\frac{F(p)}{p}$$

B.
$$\frac{F(p)}{p}$$

C.
$$\frac{F(p+1)}{p}$$

D.
$$-\frac{F(p+1)}{p}$$

5) (2 points) Fourier transform of the signature function is

A.
$$\sqrt{\frac{2}{\pi}} \frac{i}{s}$$

B. $-\sqrt{\frac{2}{\pi}} \frac{i}{s}$
C. $\sqrt{\frac{2}{\pi}} \frac{1}{s}$
D. $\sqrt{\frac{2}{\pi}} \frac{-1}{s}$

6) (2 points) The value of the integral $\int_{-\infty}^{\infty} \frac{1}{(x^2 + a^2)^2} dx$ is

A.
$$\frac{\pi}{2a}$$

B. $-\frac{\pi}{2a^3}$
C. $-\frac{\pi}{2a}$
D. $\frac{\pi}{2a^3}$

7) (3 points) The Mellin transform of the function $\frac{1}{(x+2)(x+9)}$ is

A.
$$\frac{-\pi e^{-i\pi s}}{\sin \pi s} \left\{ \frac{(-2)^{s-1}}{7} - \frac{(-9)^{s-1}}{7} \right\}$$

B.
$$\frac{\pi e^{-i\pi s}}{\sin \pi s} \left\{ \frac{(-2)^{s-1}}{7} - \frac{(-9)^{s-1}}{7} \right\}$$

C.
$$\frac{-\pi e^{-i\pi s}}{\sin \pi s} \left\{ \frac{(-2)^{s-1}}{7} + \frac{(-9)^{s-1}}{7} \right\}$$

D.
$$\frac{-\pi e^{-i\pi s}}{\sin \pi s} \left\{ \frac{(-2)^s}{7} - \frac{(-9)^{s-1}}{7} \right\}$$

8) (3 points) Let the Mellin transform of the function f(x) is F(s). Then the Mellin transform of the function $f^{(n)}(x)$, $n \in \mathbb{N}$ is

A.
$$\frac{\Gamma(s)}{\Gamma(s-n)}F(s-n)$$

B.
$$(-1)^{n}\frac{\Gamma(s)}{\Gamma(n)}F(s-n)$$

C.
$$\frac{1}{s}F(s-a)$$

D.
$$(-1)^{n}\frac{\Gamma(s)}{\Gamma(s-n)}F(s-n)$$

9) (4 points) The inverse Z transform of the function $F(z) = \frac{9z^3}{(3z-1)^2(z-2)}$ is

$$\begin{aligned} \text{A.} \quad & \frac{9}{25} \left\{ 2^{n+2} - (n+11) \frac{1}{3^{n+2}} \right\} \\ \text{B.} \quad & \frac{9}{25} \left\{ 2^{n+2} + (5n+11) \frac{1}{3^{n+2}} \right\} \\ \text{C.} \quad & \frac{9}{25} \left\{ 2^{n+2} - (5n+11) \frac{1}{3^{n+2}} \right\} \\ \text{D.} \quad & \frac{9}{25} \left\{ 2^n - (5n+11) \frac{1}{3^{n+2}} \right\} \end{aligned}$$

- 10) (4 points) Solution of the difference equation $y_{n+2} 5y_{n+1} + 6y_n = 2n+1$, $y_0 = 0, y_1 = 1$ is
 - A. 3^n B. $(-3)^n$ C. $2 - 2^{n+1} + 2 \cdot 3^n + n$ D. $(-2)^n$

Algebra I

Q1. (1 point) Let $\mathcal{B} = \{(1, 0, -1), (1, 1, 1), (2, 2, 0)\}$ be a basis for \mathbb{C}^3 . The dual basis \mathcal{B}^* of \mathcal{B} for \mathbb{C}^{3^*} is given by

1)
$$f_1(x_1, x_2, x_3) = x_1, f_2(x_1, x_2, x_3) = x_2, f_3(x_1, x_2, x_3) = x_3$$

2) $f_1(x_1, x_2, x_3) = -x_1, f_2(x_1, x_2, x_3) = -x_2, f_3(x_1, x_2, x_3) = x_3$
3) $f_1(x_1, x_2, x_3) = x_1 - x_2, f_2(x_1, x_2, x_3) = x_1 - x_2 + x_3, f_3(x_1, x_2, x_3) = -\frac{1}{2}x_1 + x_2 - \frac{1}{2}x_3$
4) $f_1(x_1, x_2, x_3) = 1, f_2(x_1, x_2, x_3) = 0, f_3(x_1, x_2, x_3) = -1$

- Q2. (1 point) Let V be the vector space of all polynomial functions over the field of real numbers. Let a and b be fixed real numbers and let f be a linear functional on V defined by $f(p) = \int_a^b p(x) dx$. If D is the differentiation operator on V, then $D^t f$, D^t is transpose of D, is given by
 - 1) 1 2) 0 3) p(b) - p(a)4) p(a) - p(b)
- Q3. (1 point) Let n be a positive integer and let V be the vector space of all polynomial functions over the field of real numbers which have degree at most n. If D is the differentiation operator on V, then dimension of the null space of D^t , D^t is transpose of D, is given by
 - 1) 0
 2) n-1
 3) 1
 4) n+1
- Q4. (2 points) Let D_1, D_2 be the functions on set of 3×3 matrices over the field of real numbers defined by, for $A = [A_{ij}]_{3\times 3}$, $D_1(A) = A_{11} + A_{22} + A_{33}$ and $D_2(A) = -A_{11}^2 + 3A_{11}A_{22}$. Then
 - 1) D_1 is a 2-linear function
 - 2) D_2 is a 2-linear function
 - 3) both D_1 and D_2 are 2-linear functions
 - 4) both D_1 and D_2 are not 2-linear functions

Q5. (2 points) The determinant of the matrix $A = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix}$ is

1) 0

2)
$$(a-b)(c-a)(c-b)$$

3) -1
4) $(b-a)(c-a)(b-c)$

Differential Geometry

- 1. The curvature of the function $f(x) = x^2 + 2x + 1$ at x = 0 is?
 - A. 3/2. B. 2. C. 0. D. $\left|\frac{2}{5^{3/2}}\right|$.
- 2. The curvature of the function $f(x) = x^3 x + 1$ at x = 1 is given by?
 - A. |6/5|. B. |3/5|. C. 0. D. $|\frac{6}{5^{3/2}}|$.
- 3. The curvature of a function depends directly on leading coefficient when x = 0 which of the following could be f(x)?
 - A. $f(x) = 323x^3 + 4334x + 10102$. B. $f(x) = x^5 + 232x^4 + 232x^2 + 12344$. C. $f(x) = ax^5 + c$. D. $f(x) = 33x^2 + 112345x + 8945$.
- 4. Consider the curvature of the function $f(x) = e^x$ at x = 0. The graph is scaled up by a factor of and the curvature is measured again at x = 0. What is the value of the curvature function at x = 0 if the scaling factor tends to infinity?
 - A. a.B. 2.C. 1.D. 0.
- 5. Let S_1 be unit sphere in \mathbb{R}^3 center at origin and S_2 be another sphere in \mathbb{R}^3 of radius 5 center at origin. Let γ_1 and γ_2 be two diametric circles on S_1 and S_2 respectively, and κ_i , τ_i are curvatures and torsions of γ_i respectively, for i = 1, 2. Then

A. $\kappa_1 = \kappa_2 \text{ and } \tau_1 < \tau_2,$ B. $\kappa_1 = \kappa_2 \text{ and } \tau_1 > \tau_2,$ C. $\kappa_1 < \kappa_2 \text{ and } \tau_1 = \tau_2,$ D. $\kappa_1 > \kappa_2 \text{ and } \tau_1 = \tau_2,$

Algebra I

- 6. A is a 2×2 unitary matrix. Then eigen value of A are
 - A. 1, -1.
 - B. 1, -i.
 - C. i, -i.
 - D. -1, i.

7. A is 5×5 matrix, all of whose entries are 1, then

- A. A is not diagonalizable.
- B. A is idempotent.
- C. A is nilpotent.
- D. The minimal polynomial and the characteristics polynomial of A are not equal.
- 8. A is a 5 × 5 matrix over \mathbb{R} , then $(t^2 + 1)(t^2 + 2)$
 - A. is a minimal polynomial.
 - B. is a characteristics polynomial.
 - C. is minimal as well as characteristics polynomial.
 - D. is not minimal as well as characteristics polynomial.
- 9. M is a 2-square matrix of rank 1, then M is
 - A. diagonalizable and non singular.
 - B. diagonalizable and nilpotent .
 - C. neither diagonalizable nor nilpotent.
 - D. either diagonalizable or nilpotent.
- 10. Let $p(\mathbb{R})$ be vector space of all polynomials over \Re . $T_i : P(\mathbb{R}) \to P(\mathbb{R})$ such that $T_1(f(x)) = \int_0^x f(t) dt$ and $T_2(f(x)) = f'(x)$. Then
 - A. T_1 is 1-1, T_2 is not.
 - B. T_2 is 1-1, T_1 is not.
 - C. T_1 is onto and T_2 is 1-1.
 - D. T_1 and T_2 both are 1-1. .

Algebra II

- 11. What is the order of the subgroup generated by $20 \pmod{30}$ in the cyclic group \mathbb{Z}_{30} ?
 - A. 20.B. 10.C. 6.D. 3.
- 12. An isomorphism $f : \mathbb{R} \longrightarrow \mathbb{R}^+$ from the additive group \mathbb{R} of real numbers onto the multiplicative group \mathbb{R}^+ of positive real numbers is defined by
 - A. $f(x) = x^2$. B. $f(x) = x^3$. C. $f(x) = \sin$. D. $f(x) = 4^{x+1}$.
- 13. Consider following statements:
 - (I) Every group of order 36 is abelian.
 - (II) A group in which every element is of order at most 2 is abelian.

Pick the correct option:

- A. Only I is correct.
- B. Only II is correct.
- C. Both are correct.
- D. Both are incorrect.
- 14. Let F and F' be two finite fields with nine and four elements respectively. How many field homomorphisms are there from F to F'?
 - A. 3.
 - B. 2.
 - C. 1.
 - D. 0.
- 15. How many fields are there (up to isomorphism) with exactly 6 elements?
 - A. 3.B. 2.C. 1.
 - D. 0.

Algebra III

- 16. Let G_1 be semi direct product $\mathbb{Z}_5 \triangleleft \mathbb{Z}_2$ and G_2 be semi direct product $\mathbb{Z}_3 \triangleleft \mathbb{Z}_7$. Then
 - A. G_1 is cyclic.
 - B. G_2 is abelian.
 - C. G_1 is abelian but G_2 is not.
 - D. G_1 , G_2 both may not be abelian.
- 17. Let S_n be a permutation group for ngeq1. Consider following statements:
 - (I) S_n has composition series for ngeq7.
 - (II) S_n is solvable for ngeq7.

Pick the correct option:

- A. Statement (I) implies statement (II).
- B. Statement (II) implies statement (I).
- C. Statement (I) is correct but Statement (II) is not.
- D. Statement (I) is correct but Statement (II) is not.
- 18. Which of the following is a correct statement;
 - A. Two finitely generated modules over a PID are isomorphic if and only if they have the same invariant factors (up to units).
 - B. $Hom_{\mathbb{Z}}(\mathbb{Q},\mathbb{Q}) \neq \mathbb{Q}$.
 - C. A torsion module is simple if and only if M is cyclic with prime exponent.
 - D. A finitely generated rank 1 module is free.
- 19. Let G and H be solvable groups.
 - A. $G \times H$ is solvable.
 - B. $G \times H$ is nilpotent.
 - C. $G \times H$ is abelian.
 - D. $G \times H$ has trivial center.
- 20. Let G be a group of order 10. Then considered G as a \mathbb{Z} -module module. Then
 - A. G is a torsion \mathbb{Z} -module.
 - B. G is not a torsion \mathbbm{Z} module. .
 - C. Every element of G is not of finite order.
 - D. G is torsion free.

PSMT/PAMT 302: Mock test Functional Analysis (Sample Questions)

(MCQs)

- Instructions:
- 1) All questions carry equal marks.
- 2) Each question has four options, and only one is correct option.
- 3) Students has to choose the correct option to answer the question.
- Q.1 X is a Baire space if and only if (Complete true statement by choosing correct option from following)
 - A. given any countable collection $\{U_n\}$ of open sets in X, each of which is dense in X, their intersection $\cap U_n$ is also dense in X.
 - B. given any countable collection $\{A_n\}$ of closed sets in X, each of which is dense in X, their intersection $\cap U_n$ is also closed dense in X.
 - C. given any countable collection $\{U_n\}$ of open sets in X, each of which is dense in X, their intersection $\cup U_n$ is also dense in X.
 - D. None of these.
- Q.2 Which of following is true statement.
 - A. The set of rationals \mathbb{Q} is G_{δ} set in the reals.
 - B. If X is compact Hausdroff space then X is Baire space.
 - C. \mathbb{Z}_+ is not Baire space.
 - D. \mathbb{R} is not a Baire space.
- Q.3 Which following is Hilbert space.
 - A. l^p space $p \neq 2$
 - B. The space C[a, b] with norm defined as $||x|| = \max_{t \in J} |x(t)|$ for $x \in C[a, b]$ and J = [a, b].
 - C. l^p where p = 2
 - D. $L^p[a, b]$ for $p \neq 2$.
- Q.4 If $f: X \to \mathbb{C}$ is bounded linear function on normed space X then which of following defines the norm of function f.

A.
$$||f|| = \sup_{x \in X} \frac{|f(x)|}{||x||}$$
.
B. $||f|| = \inf_{x \in X} \frac{|f(x)|}{||x||}$.

C.
$$||f|| = \sup_{x \in X, x \neq 0} \frac{|f(x)|}{||x||}$$
.
D. $||f|| = \inf_{x \in X, x \neq 0} \frac{|f(x)|}{||x||}$.

- Q.5 Let p be real valued function defined on vector space X satisfying $p(x+y) \le p(x)+p(y)$ and $p(\alpha x)\alpha p(x)$ for each $\alpha \ge 0$. Suppose f is linear functional defined on a subspace S and that $f(s) \le p(s)$ for all $s \in S$. Then there is a linear functional F defined on X such that (Complete the statement of Hahn Banach theorem)
 - A. $F(x) \le p(x)$ for all x, and F(s) = f(s) for all $s \in S$.
 - B. F(x) > p(x) for all x, and F(s) = f(s) for all $s \in S$.
 - C. F(x) > p(x) for all x, and $F(s) \neq f(s)$ for all $s \in S$.
 - D. F(x) < p(x) for all x, and $F(s) \neq f(s)$ for all $s \in S$.

PSMT/PAMT 102: Analysis-I Mock Test Sample Questions Instructions:

(MCQs)

- 1) All questions carry equal marks.
- 2) Each question has four options, and only one is correct option.
- 3) Students has to choose the correct option to answer the question.
- Q.1 Suppose $K \subset Y \subset X$. Then K is compact relative to X if and only if (Complete true statement by choosing correct option from following)
 - A. K is compact relative to Y
 - B. $K = \{0\}.$
 - C. K is closed relative to Y.
 - D. K is open relative to Y.

Q.2 Let E^0 denotes the set of all interior points of a set E. Then which of following is true.

- A. If $E \subset E^0$ then is closed.
- B. $\overline{E^0} = E$
- C. E^0 is neither open nor closed.
- D. E is open if and only if $E^0 = E$.
- Q.3 Suppose E is an open set in \mathbb{R}^n , f maps E into \mathbb{R}^m , and $x \in E$. If there exists a linear transformation A of \mathbb{R}^n into \mathbb{R}^m such that

$$\lim_{h \to 0} \frac{|f(x+h) - f(x) - Ah|}{|h|} = 0,$$

then which of following is correct.

- A. f is differentiable at x and $f'(x) = A^T$.
- B. f is not differentiable at x.
- C. f is differentiable at x and f'(x) = A
- D. f is differentiable at x and $f'(x) \neq A$.
- Q.4 A mapping f of set E into \mathbb{R}^k is said to be bounded
 - A. if there exists real number M such that $|f(x)| \ge M$ for all $x \in E$.
 - B. if there exists a closed ball $B(0,r) \subset E$ and real number M > 0 such that $|f(x)| \geq M$ for all $x \in B(0,r)$.
 - C. if there exists real number M such that $|f(x)| \leq M$ for all $x \in E$.

D. if there exists a ball $B(x_0, r) \subset E$, such that $|f(x)| \ge \frac{1}{r}$ for all $x \in B(x_0, r)$.

Q.5 If $f : \mathbb{R}^2 \to \mathbb{R}$ is defined by f(x, y) = xy, then $D_f(a, b)(x, y) = ?$

- A. abxyB. bx + ayC. ax + byD. xy
- Q.6 Let $f, g: A \to \mathbb{R}$ be integrable. For any partition P of A and sub rectangle S, then which of following is true.
 - A. $m_S(f) + m_S(g) \le m_S(f+g)$ B. $m_S(f) + m_S(g) > m_S(f+g)$ C. $M_S(f+g) > M_S(f) + M_S(g)$ D. $m_S(f) + m_S(g) = 0$
- Q.7 If $\{A_i\}$ countable collection with $A = \bigcup_{i=1}^{\infty} A_i$ and each A_i has measure zero. Then which of following is true.
 - A. measure of A is greater than zero.
 - B. measure of A is zero.
 - C. A has content zero.
 - D. A is compact.
- Q.8 Which of following is a statement of Heine Borel theorem.
 - A. Let F be an open covering of a closed and bounded set A in \mathbb{R}^n . Then a finite sub cover of F also covers A.
 - B. Let F be an open covering of a closed and bounded set A in \mathbb{R}^n . Then any finite sub cover of F does not cover A.
 - C. Let F be an open covering of a closed set A in \mathbb{R}^n . Then a finite sub cover of F also covers A.
 - D. Let F be an open covering of set A in \mathbb{R}^n . Then a finite sub cover of F also covers A.
- Q.9 A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is said to be differentiable at c if(choose correct option from following to complete a true statement)
 - A. There exists function $T_c : \mathbb{R}^n \to \mathbb{R}^m$ such that $f(c+v) = f(c) + T_c(v) + ||v|| E_c(v)$, where $E_c(v) \to 0$ as $v \to 0$.
 - B. There exists function $T_c : \mathbb{R}^n \to \mathbb{R}^m$ such that $f(c+v) = f(c) + T_c(v) + ||v|| E_c(v)$, where $E_c(v) \to \infty$ as $v \to 0$.
 - C. There exists function $T_c : \mathbb{R}^n \to \mathbb{R}^m$ such that $f(c+v) = f(c) + T_c(v) + E_c(v)$, where $E_c(v) \to 0$ as $v \to 0$.

D. There exists function $T_c : \mathbb{R}^n \to \mathbb{R}^m$ such that $f(c+v) = f(c) + T_c(v)$, where $T_c(v) \to 0$ as $v \to 0$.

Q.10 Consider the function $f:(0,1) \to \mathbb{R}$ defined by $f(x) = \frac{1}{x}$. Then

- A. f is not continuous but bounded in (0, 1).
- B. f is neither continuous nor bounded in (0, 1).
- C. f is not continuous.
- D. f is continuous but not bounded in (0, 1).

Answer to this question is (D)

PSMT/PAMT 203: Analysis-II (Mock Test) (I Sample questions Instructions:

(MCQs)

- 1) All questions carry equal marks.
- 2) Each question has four options, and only one is correct option.
- 3) *m* denote Lebesgue measure and μ is an arbitrary measure.

Q.1 If $X = \mathbb{R}^n$, and $A = \prod_{i=1}^n (a_i, b_i] a_i, b_i \in \mathbb{R}$ for all $i = 1, 2, \dots$ Then $m(A) = \dots$?

- A. 0. B. $Vol(A) = \prod_{i=1}^{n} (b_i - a_i)$ C. $\sum_{i=1}^{n} (b_i - a_i)$ D. 2
- Q.2 Let \mathscr{A} be a σ -algebra of subsets of \mathbb{R}^n , E_1, \ldots, E_n a finite sequence of disjoint measurable sets. Then which of following is true.
 - A. $m^*(A \cap [\cup_{i=1}^n E_i]) = \sum_{i=1}^n m^*(A \cap E_i)$ B. $m^*(A \cap [\cup_{i=1}^n E_i]) = \sum_{i=1}^n m^*(A \cup E_i)$ C. $m^*(A \cap [\cup_{i=1}^n E_i]) = \sum_{i=1}^n m^*(A^c \cap E_i)$ D. $m^*(A \cap [\cup_{i=1}^n E_i]) = \sum_{i=1}^n m^*(A \cap E_i^c)$
- Q.3 Let X be a measure space and (E_n) be a sequence of measurable sets such that $E_{n+1} \subset E_n$ for each $n \in \mathbb{N}$. Let $\mu(E_1)$ be finite. Then which of following is true.
 - A. $\mu(\bigcup_{i=1}^{\infty} E_i) = \lim_{n \to \infty} \mu(E_n).$ B. $\mu(\bigcap_{i=1}^{\infty} E_i) = \mu(E_1).$ C. $\mu(\bigcap_{i=1}^{\infty} E_i) = \lim_{n \to \infty} \mu(E_n).$ D. $\mu(\bigcup_{i=1}^{\infty} E_i) = \mu(E_n).$
- Q.4 Let A be any set, and E_1, E_2, \ldots, E_n finite collection of disjoint measurable sets. Then
 - A. $\mu^*(A \cup (\cap_{i=1}^n E_i)) = \sum_{i=1}^n \mu^*(A \cap E_i).$ B. $\mu^*(A \cap (\cap_{i=1}^n E_i)) = \sum_{i=1}^n \mu^*(A \cap E_i).$ C. $\mu^*(A \cap (\cup_{i=1}^n E_i)) = \sum_{i=1}^n \mu^*(A \cup E_i).$ D. $\mu^*(A \cap (\cup_{i=1}^n E_i)) = \sum_{i=1}^n \mu^*(A \cap E_i).$

Q.5 Let X be a measurable space and $E \subseteq X$.

1. E is measurable.

- 2. Given $\epsilon > 0$, there exists open set $O \supset E$ with $\mu^*(O E) < \epsilon$.
- 3. $\mu^*(A) = 0$

Then which of following pair is of equivalent statements.

- A. 1 and 2.
- B. 2 and 3.
- C. 3 and 1.
- D. None of these.

Q.6 If f and g are measurable functions which of following function is not measurable.

- A. f + g
- B. fg
- C. |f|
- D. $f\chi_A$ where A is non measurable set.

Q.7 If $f,g:[0,1]\to\mathbb{R}$ are defined as follows.

$$f(x) = \begin{cases} 0, & 0 < x \le 1/2 \\ 1, & 1/2 < x \le 1 \end{cases} \quad g(x) = \begin{cases} 1, & 0 < x < 1/2 \\ 0, & 1/2 \le x \le 1. \end{cases}$$

Then which of following is true.

A. f = g a.e. B. $f \neq g$ a.e. C. $f \leq g$ a.e. D. $f \geq g$ a.e.

Q.8 If $f:[0,1] \to \mathbb{R}$ is defined as follows.

$$f(x) = \begin{cases} 0, & 0 < x \le 1/2 \\ 1, & 1/2 < x \le 1 \end{cases}$$

Then $m(\{x; f(x) > 1/2\}) = ?$
A. 0
B. 1/2
C. 1

D. $+\infty$

Q.9 If $g:[0,1] \to \mathbb{R}$ is defined as follows.

$$g(x) = \begin{cases} 0, & 0 < x \le 1\\ x - 1, & 1 < x \le 2 \end{cases}$$

Then $m(\{x; g(x) > 0\}) = ?$

A. 0
B. 1/2
C. 1
D. +∞

- Q.10 Let $X = [0,1] \times [0,1] \times [0,1] \subseteq \mathbb{R}^3$, x = (1/2, 1/2, 1/2), then m(A + x) = ?.
 - A. 0,
 - B. 1,
 - C. 1+1/2
 - D. $+\infty$

Partial Differential Equations

- 1. The partial differential equation $y^2 u_{xx} 2xyu_{xy} + x^2 u_{yy} = \frac{y^2}{x}u_x + \frac{x^2}{y}u_y$ is
 - (A) Parabolic
 - (B) Hyperbolic
 - (C) Elliptic
 - (D) Integral Surface.

2. Let $\omega_n = \frac{2\pi^2}{\Gamma n/2}$ and $B_r(x) = \{y \in \mathbb{R}^n / | x - y | < r\}$. The volume of $B_r(x)$ in \mathbb{R}^n is given by (A) $\frac{\omega_n}{n}$ (B) $r\frac{\omega_n}{n}$ (C) $r^{n-1}\frac{\omega_n}{n}$ (D) $r^n\frac{\omega_n}{n}$.

3. The general solution of yuu_x + xuu_y = xy is given by
(A) x² - u² = c₁ where c₁ is a constant
(B) y² - u² = c₂ where c₂ is a constant
(C) h(x² - u², y² - u²) = 0 where h is an arbitrary function
(D) h(x², y²) = u² where h is an arbitrary function.

4. If $f(x) = \phi(r)$ where $x \in I\!\!R^n$ and r = |x| then $\Delta f(x)$ equals to

(A)
$$\phi''(r) + (\frac{n+1}{r})\phi'(r)$$

(B) $\phi''(r) + (\frac{n+1}{r^2})\phi'(r)$
(C) $\phi''(r) + (\frac{n-1}{r})\phi'(r)$
(D) $\phi''(r) + (\frac{n-1}{r^2})\phi'(r).$

5. Suppose u is harmonic on an open set Ω . If $x \in \Omega$ and r > 0 is small enough so that $\overline{B_r(x)} \subset \Omega$ then u(x) equals to

(A)
$$\frac{1}{\omega_n} \int_{S_1(0)} u(x+y) d\sigma(y)$$

(B)
$$\frac{1}{\omega_n} \int_{S_1(0)} u(x-y) d\sigma(y)$$

(C)
$$\frac{1}{\omega_n} \int_{S_1(0)} u(x-ry) d\sigma(y)$$

(D)
$$\frac{1}{\omega_n} \int_{S_1(0)} u(x+ry) d\sigma(y)$$

6. The fundamental solution for Laplacian operator Δ is given by

(A)
$$N(x) = \frac{|x|^{2+n}}{(2+n)\omega_n}$$
; $(n > 2)$ and $N(x) = \frac{1}{2\pi} \log|x|$; $(n = 2)$
(B) $N(x) = \frac{|x|^{2-n}}{(2-n)\omega_n}$; $(n > 2)$ and $N(x) = \frac{1}{2\pi} \log|x|$; $(n = 2)$
(C) $N(x) = \frac{|x|^n}{n\omega_n}$; $(n > 2)$ and $N(x) = \frac{1}{2\pi} \log|x|$; $(n = 2)$
(D) $N(x) = \frac{|x|^2}{2\omega_n}$; $(n > 2)$ and $N(x) = \frac{1}{2\pi} \log|x|$; $(n = 2)$

- 7. The Gaussian kernel $K_t(x)$ defined on $\mathbb{R}^n \times (0, \infty)$ satisfies
 - (A) $(\Delta_x)K_t(x) = 0$ (B) $(\partial_t - \Delta_x)K_t(x) = 0$ (C) $(\partial_t)K_t(x) = 0$
 - (\circ) (\circ_l) (\circ_l) (\circ_l) (\circ_l) (\circ_l)
 - (D) $(\partial_t^2 \Delta_x)K_t(x) = 0.$
- 8. Consider the boundary value problem of heat conduction ^{∂u}/_{∂t} = k ^{∂²u}/_{∂x²}, -∞ < x < ∞, t > 0 with initial conditions u(x, 0) = h(x) when -∞ < x < ∞ and boundary conditions u and u_x → 0 as | x |→∞. Let the Fourier transform of u(x, t) and h(x) be denoted by F{u(x,t)} = U(α,t) and F{h(x)} = H(α). The application of Fourier transform converts this boundary value problem in initial value problem as

 (A) U_t + kα²U = 0 with initial condition U(α, 0) = H(α)
 (B) U_t kα²U = 0 with initial condition U(α, 0) = H(α)
 (C) U_t + kαU = 0 with initial condition U(α, 0) = H(α)
 - (D) $U_t k\alpha U = 0$ with initial condition $U(\alpha, 0) = H(\alpha)$
- 9. The spherical mean $M_h(x, r)$ satisfies
 - (A) $\Delta_x M_h(x,r) = [\partial_r^2 + (\frac{n}{r})\partial_r]M_h(x,r)$ (B) $\Delta_x M_h(x,r) = [\partial_r^2 + (\frac{n-1}{r})\partial_r]M_h(x,r)$ (C) $\Delta_x M_h(x,r) = [\partial_r^2 + (\frac{n+1}{r})\partial_r]M_h(x,r)$ (D) $\Delta_x M_h(x,r) = [\partial_r^2 + (\frac{n-2}{r})\partial_r]M_h(x,r).$

10. Consider one dimensional wave equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{9} \frac{\partial^2 u}{\partial t^2}, -\infty < x < \infty, t > 0$ with initial conditions u(x,0) = f(x) = 1 when $|x| \le 2$ otherwise u(x,0) = f(x) = 0 and $u_t(x,0) = g(x) = 1$ when $|x| \le 2$ otherwise $u_t(x,0) = g(x) = 0$. D'Alembert solution gives the value of $u(0,\frac{1}{6})$ is equals to

(A) $\frac{5}{6}$ (B) $\frac{7}{6}$ (C) $\frac{11}{6}$ (D) $\frac{13}{6}$

Sem-II PSMT205/PAMT205 PROBABILITY THEORY (Sample Questions)

- 1. A mixture of candies contains 6 mints, 4 toffees, and 3 chocolates. If a person makes a random selection of one of these candies, find the probability of getting a toffee or a chocolate.
 - A. 9/13
 - B. 10/13
 - C. 7/13
 - D. 13/7
- 2. Let $\Omega = \{1, 2, 3, 4\}$ and $\mathcal{F}_1 = \{\emptyset, \{1, 2\}, \{3, 4\}\},\$ $\mathcal{F}_2 = \{\emptyset, \Omega, \{1\}, \{2\}, \{1, 2\}, \{3, 4\}, \{2, 3, 4\}, \{1, 3, 4\}\}.$ Then
 - A. \mathcal{F}_2 is a field but \mathcal{F}_1 is not.
 - B. \mathcal{F}_1 and \mathcal{F}_2 both are not fields.
 - C. \mathcal{F}_1 and \mathcal{F}_2 both are fields.
 - D. \mathcal{F}_1 is a field but \mathcal{F}_2 is not.
- 3. Suppose that we have a fuse box containing 20 fuses, of which 5 are defective. If 2 fuses are selected at random and removed from the box in succession without replacing the first, what is the probability that both fuses are defective?
 - A. 1/10
 B. 1/19
 C. 1/4
 D. 1/5
- 4. Karan, Kumar and Kana are participating in the shooting event. The probability that Karan hits a target is 1/4 and the corresponding probabilities for Kumar and Kana are 1/3 an 2/5, respectively. If they all fire together, find the probability that Karan hits the target given that exactly one hit is registered.
 - A. 1/8
 B. 3/8
 C. 2/9
 D. 5/9
- 5. A consulting firm rents cars from three agencies: 30% from agency A, 20% from agency B and 50% from agency C. 15% of the cars from A, 10% of the cars from B and 6% of the cars from C have bad tyres. If a car rented by the firm has bad tyres, find the probability that it came from agency C.

- A. 0.2158
- B. 0.4158
- C. 0.3158
- D. 0.5158

6. What is the expectation of a random variable with Bernoulli distribution B(1, p)?

A. 2p. B. p. C. 1 D. p/27. $f(x) = \begin{cases} \frac{1}{9}x^2, & 0 < x < 3, \end{cases}$

$$J(x) = \begin{cases} 9\\ 0, & elsewhere; \end{cases}$$

is a probability density function of a continuous random variable X. Find P(X > 1).

- A. 25/27
 B. 23/27
 C. 13/27
 D. 26/27
- 8. A random variable X has the probability density function given by

$$f(x) = \begin{cases} c\sqrt{x}, & 0 < x < 1, \\ 0, & elsewhere. \end{cases}$$

Find the value of the constant c.

- A. 3/2
 B. 1/2
 C. 2/3
 D. 1/3
- 9. If X and Y are independent random variables and ϕ_X, ϕ_Y denotes characteristic functions of X and Y respectively then,
 - A. $\phi_{X+Y}(t) = \phi_X(t) + \phi_Y(t).$ B. $\phi_{X+Y}(t) = \phi_{XY}(t).$ C. $\phi_{X+Y}(t) = \phi_{X-Y}(t).$
 - D. $\phi_{X+Y}(t) = \phi_X(t)\phi_Y(t)$.

- 10. A fair coin is tossed independently n times. Let S_n be the number of heads obtained. Use the Chebyshev inequality to find a lower bound of the probability that $\frac{S_n}{n}$ differs from 1/2 by less than 0.1 when n = 100.
 - A. 1/4
 - B. 3/4
 - C. 1/2
 - D. 1/3

SEM III, Numerical Analysis Sample MCQ Questions

- 1. The hexadecimal equivalent of the binary number $(1101001.1110011)_2$ is given by
 - A) $(69.E6)_{16}$.
 - B) $(59.E6)_{16}$.
 - C) $(45.A2)_{16}$.
 - D) $(65.A6)_{16}$.
- 2. The sum of 0.123×10^3 and 0.456×10^2 in 3-digit mantissa form after rounding is given by
 - A) 0.1686×10^3 .
 - B) 0.169×10^3 .
 - C) 0.168×10^3 .
 - D) 0.170×10^3 .
- 3. Find a root of the equation $2x = log_{10}x + 7$ between 3 and 4 by Regula Falsi method correct to 3 decimal places.
 - A) 3.554
 - B) 3.957
 - C) 3.245
 - D) 3.789
- 4. Obtain the first iteration in solving the equation $x^3 5x + 1 = 0$ by Muller's method.
 - A) 0.191857.
 - B) 0.20.
 - C) 0.22567.
 - D) 0.21574.
- 5. Using Bairstow's method obtain the quadratic factor of the equation $x^4 3x^3 + 20x^2 + 44x + 54 = 0$, with (p, q) = (2, 2).
 - A) p = 2.1436, q = 2.1876
 - B) p = 1.9512, q = 1.9672
 - C) p = 1.9413, q = 1.9538
 - D) p = 2.1654, q = 2.1982
- 6. Solve the system of equations using Cholesky's method.

$$\begin{array}{rcl} x + 2y + 3z &=& 5, \\ 2x + 8y + 22z &=& 6, \\ 3x + 22y + 82z &=& -10. \end{array}$$

- A) (x, y, z) = (1, 2, 3)B) (x, y, z) = (2, 3, 1)C) (x, y, z) = (3, 1.2)D) (x, y, z) = (2, 3, -1)
- 7. Let P_k be the sum of the modulii of the elements along the k^{th} row excluding the diagonal element a_{kk} . Then by Brauer's theorem every eigenvalue λ of A satisfies
 - $\begin{aligned} \text{A)} \quad |\lambda| &\leq \max_{i} \left[\sum_{j=1}^{n} |a_{ij}| \right] \\ \text{B)} \quad |\lambda a_{kk}| &\leq P_{k} \\ \text{C)} \quad |\lambda| &= \max_{i} \left[\sum_{j=1}^{n} |a_{ij}| \right] \\ \text{D)} \quad |\lambda a_{kk}| &= P_{k} \end{aligned}$
- 8. The Jacobi iteration scheme $\mathbf{x}^{(\mathbf{k}+1)} = H\mathbf{x}^{(\mathbf{k})} + \mathbf{c}$, k = 0, 1, 2, ... for finding the solution of a system of equations $A\mathbf{X} = \mathbf{b}$ converges if
 - A) ||A|| < 1B) $||A|| \ge 1$ C) ||H|| < 1D) $||H|| \ge 1$

9. Using composite Simpson's rule evaluate $\int_0^1 \frac{dx}{1+x}$ with 4 equal subintervals.

- A) 0.694444
- B) 0.708333
- C) 0.693254
- D) 0.693155

10. The weight function w(x) in Gauss Laguerre integration formula

1. Let v be a vector in a Hilbert space $(\mathcal{H}, < \cdot, \cdot >)$. If $\langle x, v \rangle = 0$ for all $x \in \mathcal{H}$ then (A) ||v|| = 0(B) $||v|| \neq 0$ (C) x and v are linearly independent

(D) x and v are linearly dependent

2. Let X denote a Banach space and X^* denote its dual. Then (A) always $(X^*)^* = X^*$ (B) always $(X^*)^* = X$ (C) always $X \subseteq (X^*)^*$ (D) always $(X^*)^* \subseteq X$

3. An orthonormal set $O = \{e_i\}$ in a Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ is complete if and only if

(A) every Cauchy sequence in the set O is convergent.

(B) $\langle x, e_i \rangle = 0$ for all $x \in \mathcal{H} \Rightarrow x = 0$;

(C) $\langle x, e_i \rangle = 0$ for all $x \in O \Rightarrow e_k = 0$ for some k;

(D) O is countable.

4. Which of the following is true?

(A) A complete metric space is always a Hilbert space;

(B) A complete metric space is always a Banach space;

(C) A complete metric space is always a Normed linear space;

(D) A complete metric space is always a Baire space

5. For a normed linear space X, the fact that every closed and bounded set is compact is equivalent to

- (A) X is complete
- (B) X is a bounded set

(C) the set $\{x \in X : ||x - a|| \le R\}$ is compact for any $a \in X$ and R > 0

(D) X is closed.

- 1. The equation $a(x, y, u)u_x + b(x, y, u)u_y = c(x, y, u)$ where a, b depends on u is called
 - A. homogeneous
 - B. semilinear
 - C. linear
 - D. quasilinear
- 2. Consider the equation $yu_x xu_y = 0$ which gives characteristic curves
 - A. $x^2 = y$ B. $y^2 = constant$ C. y = xD. $x^2 + y^2 = constant$
- 3. The characteristic equations of $u_t + 2xtu_x = e^t$ are
 - A. $\frac{dt}{ds} = 2x$, $\frac{dx}{ds} = 2t$, $\frac{du}{ds} = e^t$ B. $\frac{dt}{ds} = 1$, $\frac{dx}{ds} = 2xt$, $\frac{du}{ds} = e^t$ C. $\frac{dt}{ds} = 2$, $\frac{dx}{ds} = xt$, $\frac{du}{ds} = e^t$ D. $\frac{dt}{ds} = 1$, $\frac{dx}{ds} =$, $\frac{du}{ds} = e^t$
- 4. The general solution of $u_x + u_y u = 0$ is
 - A. $u(x,y) = G(y-x)e^x$
 - B. $u(x,y) = G(y+x)e^x$
 - C. $u(x,y) = G(yx)e^x$
 - D. $u(x, y) = G(y^2 x)e^x$
- - A. $3u_1 5u_2$ B. $3u_1 + 5u_2$ C. $3u_1 - 3u_2$ D. $3u_1 + 3u_2$
- 6. The general solution of the linear partial differential equation $a(x, y, u)u_x + b(x, y, u)u_y = c(x, y, u)$ is
 - A. $F(\phi, \psi) = 1$ B. $F(\phi, \psi) = 0$
 - C. $F(\phi, \psi) = -1$

- D. $F(\phi, \psi) = 2$
- 7. Characteristics for the equation $(y^2z)z_x + (zx)z_y = y^2$ are
 - A. $\frac{dx}{y^2 z} = \frac{dy}{y^2 z} = \frac{dz}{y^2 z}$ B. $\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dz}{xz}$ C. $\frac{dx}{y^2} = \frac{dy}{x^2} = \frac{dz}{xz}$ D. $\frac{dx}{y^2 z} = \frac{dy}{xz} = \frac{dz}{y^2}$
- 8. Let P, Q, R be C^1 functions of x, y and z. The general solution of P(x, y, z)p+Q(x, y, z)q = R(x, y, z) is ... where F is an arbitrary smooth function of u and v and $u(x, y, z) = C_1$ and $v(x, y, z) = C_2$
 - A. F(u) = 0B. F(v) = 0C. F(u, v) = 0D. $F(\frac{u}{v}) = 0$
- 9. The general solution of $x^2p + y^2q = (x+y)z$ is —

A.
$$F(\frac{1}{x} - \frac{1}{y}, \frac{z}{x-y})$$

B. $F(\frac{1}{x}, \frac{1}{y})$
C. $F(\frac{1}{x}, \frac{1}{x-y})$
D. $F(\frac{1}{y}, \frac{1}{x-y})$

- 10. Consider y'' + P(x)y' + Q(x)y = 0. If both P(x) and Q(x) are analytic at p then p is called ______
 - A. singular point
 - B. ordinary point
 - C. regular singular point
 - D. both regular and ordinary point

- 1. If every two elements of a poset are comparable then the poset is called
 - A. sub ordered poset

B. totally ordered poset

- C. sub lattice
- D. semigroup

2. The composition of function is associative but not —

- A. identity
- B. idempotent
- C. distributive

D. commutative

- 3. The set of all real numbers in the interval (0, 1) is —.
 - A. countable
 - B. uncountable
 - C. finite
 - D. infinite
- 4. The set of rational numbers \mathbb{Q} is ——
 - A. countable
 - B. finie
 - C. uncountable
 - D. denumerable
- 5. A finite set is to any of its proper subset.

A. not equivalent

- B. equivalent
- C. equal
- D. not equal
- 6. Let $X = \{a, b, c\}$. Then $|\mathcal{P}(X)| = ---$
 - A. 3
 - B. 5
 - C. 8
 - D. 24
- 7. There exists no from a set to its power set

A. surjection

- B. injection
- C. bijection
- D. homomorphism
- 8. Let S be a partially ordered set. If every totally ordered subset of S has an upper bound, then S contains a element.

A. maximal

- B. minimal
- C. lub
- D. glb
- 9. Self-complemented, distributive lattice is called —

A. Boolean algebra

- B. Modular lattice
- C. complete lattice
- D. bounded lattice
- 10. If S is uncountable and T is countable then $S \setminus T$ is ——.
 - A. finite
 - B. infinite
 - C. countable
 - D. uncountable

Topology (Sem III)

- 1. Which of the following T is a topology on $X = \{a, b, c\}$?
 - A. $T = \{X, \phi, \{a\}, \{c\}\}\$ B. $T = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{c\}\}\$ C. $T = \{\phi, \{a\}, \{b\}, \{a, b\}\}\$ D. $T = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}\$
- 2. Let $X = \{a, b, c, d\}$ and let $T = \{\phi, X, \{a\}, \{c, d\}, \{a, c, d\}\}$ be a topology on X. If $E = \{a, d\}$ is a subset of X then subspace topology T_E on E is ...
 - A. $T_E = \{\phi, E, \{a\}, \{c\}\}.$ B. $T_E = \{\phi, X, \{a\}\}.$ C. $T_E = \{\phi, X, \{a\}, \{a, b\}\}.$ D. $T_E = \{\phi, E, \{a\}, \{d\}\}.$
- 3. Let $T = \{\phi, X, \{1\}, \{2, 3\}\}$ be a topology on $X = \{1, 2, 3\}$ and let $T' = \{\phi, Y, \{w\}, \{u, v\}\}$ be a topology on $Y = \{u, v, w\}$. A function $f : X \to Y$ is defined by f(1) = w, f(2) = u, f(3) = v. Then
 - A. f is a continuous function.
 - B. f is not a onto function.
 - C. f is not a one-one function.
 - D. f is not open.
- 4. If the sets A and B form a separation of X and if Y is a connected subspace of X then
 - A. either $Y \subset A$ or $Y \subset B$.
 - B. either $A \subset Y$ or $B \subset Y$.
 - C. either $\overline{A} \subset Y$ or $\overline{B} \subset Y$.
 - D. either $Y \not\subseteq A$ or $Y \not\subseteq B$.
- 5. A continuous image of a connected space is
 - A. totally disconnected.
 - B. disconnected.
 - C. connected.
 - D. both totally disconnected and disconnected.
- 6. A topological space (X, T) is separable if there exists a countable subset A of X such that ...
 - A. A = XB. $A \neq X$

- C. $\overline{A} = X$ D. $\overline{A} \neq X$
- 7. Every closed subspace of a compact space is
 - A. compact.
 - B. not compact.
 - C. neither open nor closed.
 - D. unbounded.
- 8. Let $T = \{\phi, X, \{1\}, \{2\}, \{1, 2\}\}$ be a topology on a set $X = \{1, 2, 3\}$. Then open cover of X is
 - A. $C = \{\{1\}, \{2, 3\}\}.$
 - B. C = X.
 - C. $C = \{\{1\}, \{2\}, \{3\}\}.$
 - D. $C = \{\{2\}, \{2, 3\}\}.$
- 9. Under the metric $d(a,b) = |a-b|, a, b \in \mathbb{R}$, the real line \mathbb{R} is
 - A. complete but not totally bounded.
 - B. not complete but totally bounded.
 - C. neither complete nor totally bounded.
 - D. totally bounded.
- 10. A metric space (X, d) is compact iff it is
 - A. complete and not totally bounded.
 - B. not complete but totally bounded.
 - C. neither complete nor totally bounded.
 - D. complete and totally bounded.